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Statistical hydromechanics of disperse systems. 
Part 2. Solution of the kinetic equation for 

suspended particles 
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To solve the kinetic equation for particles of a monodisperse two-phase mixture 
the method of successive approximations is developed; this resembles in its 
main features the well-known Chapman-Enskog method in the kinetic theory of 
gases. This method is applicable for a mixture whose state differs slightly from 
the equilibrium, i.e., when time and space derivatives of the dynamic variables 
describing the mean flow of both phases of the mixture are sufficiently small. 
Accordingly, the solution obtained is valid when the time and space scales of the 
mean flow exceed considerably those for random pseudo-turbulent motion of 
particles and a fluid. The conservation equations for determination of all the 
dynamic variables are formulated in approximations which have the same mean- 
ing as those of Euler and Navier & Stokes in hydromechanics of one-phase media. 

1. Introduction 
The equations of mass and momentum conservation in the mean flow of a 

monodisperse system, whose phases are regarded as interpenetrating interacting 
continua, were derived in the first part of this paper (Buyevich 1971), henceforth 
denoted by I. These equations include various terms depending upon properties 
of random motion of particles and a fluid which must be expressed through the 
dynamic variables describing the mean flow. The later problem was considered 
in I only for a disperse system in the equilibrium state when the dynamic variables 
do not depend upon time and co-ordinates. In  the general case, representations of 
those terms are unknown and the problem of their determination arises, for 
which purpose the kinetic equation for suspended particles has to be solved. 
Obviously, this problem is similar to that encountered in the kinetic theory of 
gases while formulating hydromechanic equations for a gas as for a continuum. 

It is this problem that is treated below. We consider here monodisperse 
' collisionless' systems where direct interparticle collisions are absent or, at any 
rate, play only a minor role in the momentum and energy exchange between 
particles. We employ also all the assumptions and notation of the previous work 
I without further comment. Moreover, we assume here for simplicity that quanti- 
ties defining random motion inside a disperse system in the equilibrium state are 
represented already as functions of the dynamic variables. This can be done in 
principle by means of the technique proposed in I. 
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It is convenient to rewrite the conservation equations for both phases of a 

Various averaged quantities of the type of ($ f ,  $ I ) ,  where $f, $k’ are any pseudo- 
turbulent pulsations, appearing in (1 .1)  can be expressed in terms of 8 by means 

(1.2) I ofthe relations (4’p) = R[$, $1 e, <y$;) = R,[$, $1 e,,, 
($;$;) = R ~ ~ [ $ ,  $1 ekj, e = tr e = eCi, 

which play the role of the ‘ constitutive ’ equations for the disperse system under 
consideration. 

The kinetic equation for suspended particles has the form 

+(&*$):(Af)=O, H * =  (H)-cw‘. (1.3) 

By definition, we also have relationships between the distribution function f, 
normalized to the number concentration of particles n, and the quantities (p), 

(p) = an = f dw’, (w) = - wf dw’, 8 = - (w‘ * w‘) f dw’. (1.4~4 b, c )  

It is obvious from the physical point of view that the functionf must meet the 

(w), 6: s n ‘S n ’S 
requirement lim Iw’laf = 0 (a > 0). (1.5) 

Iw’l-rn 

The explicit representations for the mean force (H) acting on the unit mass of a 
particle and for the tensor c involved in (1.3) are not essential for our treatment. 
Some possible approximate expressions for them are listed in I (see also equations 
(3.6) below). All the quantities R appearing in (1.2) are defined by properties of 
equilibrium pseudo-turbulence and can be readily found as the solutions of (1  2)  
relating to the equilibrium state, as haa been pointed out in I. Therefore, in ac- 
cordance with previous assumptions, they can be also regarded as known func- 
tions of the dynamic variables. 
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To make (1  .l) completely definite in the general case, it is necessary to solve 
(1.3) for a non-equilibrium state of a disperse system, to calculate the tensor 8 
from ( 1 . 4 ~ )  and to express pseudo-turbulent quantities involved in ( 1.1) in terms 
of the dynamic variables in accordance with (1.2). These are the main aims 
which are pursued below. 

2. The ‘ equilibrium’ distribution function 
Let us begin with a calculation of the distribution function in the equilibrium 

state and with a determination of the tensor A describing the diffusion in the velo- 
city space. For the state mentioned, equations (1 .1)  take the form 

(2.1) 
where the superscript zero indicates that the corresponding quantity is related 
to the equilibrium state when the dynamic variables are constant (except for the 
mean pressure, of course, which may depend linearly on co-ordinates). Similarly, 
the kinetic equation (1.3) is transformed into 

(H)’ = 0, - V ( p )  + do( 1 - ( p ) )  ho = 0, 

(cOw’fO) + (& * $) : (AfO) = 0. 
a 

awl 
-- 

Expressions for (H)O and CO can be easily obtained from those for (H) and C, 
quantities of the type of ($‘$‘> being substituted for by their known equilibrium 
values ( q 5 ’ $ I ) O ,  and terms proportional to derivatives of the dynamic variables 
being dropped altogether (see for example, equations (3.6) below). 

It follows from considerations in I that a disperse system in the equilibrium 
state may be visualized simply as a uniform cloud of particles suspended by the 
upward flow of a fluid. Pseudo-turbulence in such a state is axially symmetric, 
the axis of symmetry coinciding with the direction of the flow. Using the refer- 
ence frame whose axis rl is directed along the axis of symmetry and separating 
the variables in (2.2), we get 

(Summation over j is not performed here; it is obvious that the tensors A, co 
and 80 are diagonal in the co-ordinate system used.) Equations (2.3) can be 
reduced to the Hermite equation, so that their unique solution compatible with 
the requirement (1.5) has the form 

where Cj are constants and the quantities d!i and Aj satisfy the relationships. 
f:= Cjexp(-w$2/2Byi+Ajw$) (j = 1,2 ,3) ,  (2.4) 

Aji+Oj’ic!ji = 0, AiiA3-c~iAi+ej = 0, (j  = l , 2 , 3 ) .  (2.5a, b) 

From the first equation we get the tensor equality 

A = -eoco, (2.6) 
which can be looked upon as the rigorous definition of the tensor of the diffusion 
in the velocity space A. From (2.5 b )  one obtains an expression for e j  in terms of 
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Ai. Keeping in mind that w' is a random vector whose mean value is zero by 
definition, we get Aj = 0 from (2.4) and, further, ei = 0 from (2.5). 

Normalizing the functionfO from (2.3) and (2.4) with the number concentration 
of particles, we have finally 

n 3 w!2 

f o  = ( 8n3& 8g2 @3)* ( -j?l&) ' (2.7) 

Thus, according to the above assumptions and to equations (2.6) and (2.7), the 
quantities A and f o  can also be considered as known functions. 

3. The formal system of successive approximations 
Let us now consider a real state of a disperse system which differs from the 

equilibrium one so that the dynamic variables describing the mean flow depend 
upon time and space co-ordinates and, consequently, their derivatives do not 
equal zero. Nevertheless, we assume, as in the similar situation in the conven- 
tional kinetic theory (Chapman & Cowling 1952), that the deviation from the 
equilibrium state is sufficiently small for the following inequalities to be valid: 

where L and T are the space and time scales of pseudo-turbulence and (q5) denotes 
any dynamic variable. 

The primary problem consists of the determination of such a solution of (1.3) 
for a non-equilibrium state which is compatible with (1.1). Bearing in mind (3.1), 
we seek this solution in the form of a series where the role of a small parameter is 
played by small ratios of the pseudo-turbulent scales to  those for the mean flow. 
To see the order of magnitude of various terms occurring in the corresponding 
expansions of (1.1) and (1.3) we multiply each term by the factor em, where m 
is the order of the derivative of a dynamic variable involved in this term. It is 
relevant to bear in mind that those terms in (1.1) and (1.3) which do not include 
such derivatives altogether have an order of magnitude E. (One can see this from 
(2.1), which are valid at the equilibrium state.) It should be remarked that the 
parameter 8 has a rather formal meaning and is introduced only for convenience 
in order to derive the equations of successive approximations in a more under- 
standable and straightforward way. Obviously, it must be put equal to unity at 
the end of calculation. Exactly the same situation is encountered in kinetic theory 
when the Chapman-Enskog method is applied to the solution of the kinetic equa- 
tion for gas molecules (Chapman & Cowling 1952). Therefore there is no need to 
consider it in more detail. 

Further, we confine ourselves to the study of a disperse system in the random- 
phase approximation (see discussion in I). In  this case the quantity f can be 
regarded as an implicit function oft and r, i.e. it depends upon them only through 
the dynamic variables. Then 

where summation is carried out over all the dynamic variables (4). 
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Representing f in the form of a series 

f = Z;Emfm (0 < m < co) (3.3) 
and putting into action the corresponding expansions for pseudo-turbulent 
quantities 

0 = ~ ; E m e ( m ) ,  ( 4 y )  = z c E m ( 4 i p ) ( m ) ,  w n )  = 12 (w'*w')jmaw', (3.4) 'S 
we have from (1.2) 

(3.5) 

Hence, making use of the definitions of T, E, q, h in ( 1 . 1 )  and using, as an 
I ( 4 f p y m )  = R[+'+I e(m), (4'@;ym) = R~[+,  +I e p ,  

($;$;)(m) = Rik[+, +] eg), e(m) = tr = e(.?). 22 

example, the formulae for (H) and c from I, we obtain the expansions 

T = &mT(m), E = &mE("), q = s;Emq(m), h = &mh(m), 

Here the notation of I is used as pointed out above. 
In order to develop a self-consistent procedure of successive approximations 

it is necessary t o  define functions ftm) in such a manner as to yield just the Mth 
approximation for the distribution function and for all the dynamic variables, 
neglecting all the terms of the expansions (3.3) and (3.4) whose numbers are 
greater than M .  The meaning of this requirement is the same as that in the kinetic 
theory of gases (Chapman & Cowling 1952). To this end, we represent the convec- 
tive derivatives off and of any dynamic variable (4) in the following form: 
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One needs t o  determine operators in these expansions so that the expansions 
agree with the laws of mass and momentum conservation of both phases, i.e. 
with (1.1). This can be achieved if one takes the various operators in (3.7) in the 
form 

(3.8) 
Besides, from the first equation of (1 .1)  we have the following: 

(3.9) 
-- D,,(P) a(w) - Cemdiv, (w), div, (w) = - - 
ar Dt . 

Equation (3.9) is similar to (3.7) and (3.8), and completes them in a sense. 

in the form 
It is permissible to define the convective derivative of the mean pressure 

(3.10) 

Equations (3.3) and (3.7) make it possible to express the convective derivative 
off as follows: 

(3.11) 

By making use of (3.8)-(3.10), it is not difficult to obtain the explicit representa- 
tions for terms of the first sum in (3.7).  For example, 

These relationships are similar to those in the kinetic theory of gases. It is 
convenient to  choose the equilibrium distribution function f0 from (2.7) as the 
zeroth approximation f o  in (3.3). Then we have from (1.3) the following equation 
for subsequent terms in (3.3): 

(3.1 3) 
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Here we use (1.2) and (2.6), take into account the equalities dm) = 0 (m > 1) 
following from (3.6) and use the reference frame whose axes coincide with the 
principal axes of the tensor A. 

The solution of (3.13) for any m must meet the requirement 

Sf,dw’ = /w; fmdw’ = 0, (3.14) 

which is the necessary condition of consistency of these solutions with the 
conservation equations (1.1) written in the same approximation. We have in the 
mth approximation 

Various pseudo-turbulent quantities appearing in these equations are functions 
of the dynamic variables and can be expressed in an explicit form by means 
of (3.4)-(3.6), equations (3.13) for allf, (n < m) being solved. 

To conclude this section, we discuss briefly similarities and distinctions between 
the above method and the known Chapman-Enskog method. It is clear that the 
procedure of the successive approximations is the same in either case, however, 
one essential difference must be noted. In  the latter method, the scalar 0 = tr 8 
characterizes the gas temperature and is regarded as an independent parameter. 
On the other hand, the components of the tensor 0 in the flow of a disperse system 
are determined entirely by the properties of the mean flow. They are functions 
of the dynamic variables and cannot be considered as independent quantities. 
In  this respect they differ from the mean concentration or the mean velocity of 
the dispersed phase. Therefore, the independent consideration of the transfer 
equation for 0 while solving the kinetic equation (1.3) seems to be unnecessary in 
the case under study. 

4. The Eulerian and Navier-Stokes approximations 
Solving (3.13) at various m in turn, we can in principle derive the dynamic 

equations (3.15) to any accuracy. It seems to be quite sufficient in practice to 
find only equations of the zeroth and the first approximations to which it is rele- 
vant to refer, by analogy with kinetic theory and one-phase hydrodynamics, to 
as Eulerian and Navier-S tokes approximations, respectively . 
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The conservation equations of the Eulerian approximation can be derived 
very simply. In  fact, they are obtained from (3.15), the distribution function 
being given by (2.7) and all the pseudo-turbulent equantities involved being 
represented in terms of the dynamic variables in the same manner as for the 
equilibrium state. Keeping in mind the axial symmetry of equilibrium pseudo- 
turbulence, we can conclude that q(0) = { q ( O ) ,  0, 0} and the tensors W0) and T(O) are 
diagonal. Therefore, only normal pseudo-turbulent stresses of both phases and 
only the pseudo-turbulent flux of the fluid in the direction of the mean relative 
velocity (u) are taken into account in this approximation. The nature of those 
normal stresses is similar, in a sense, to that of the pressure in a gas. The additional 
flux q(0) is analogous to the flux which arises in a turbulent flow of a one-phase 
compressible fluid. 

Let us now consider the next approximation and introduce a new unknown 
function g, with 

Equation (3.13) at m = 1 can be rewritten as follows: 

fl =fog13 f o  =fO, (4'~.'Y0' = ($fP)o. (4.1) 

where div, (w) is determined by (3.9). 

of the preceding sections, we obtain the equations 
Transforming terms in the right-hand side of (4.2) with the help of relationships 

(4.3) 
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Introducing these relations inOo (4.2), we get 

383 

Further, we seek a partial solution of (4.4) in the form 

3 3 

j-1 d , j = l  
g, = K +  C L~w;+ Z (M, j i+N, j~ i )w;w; ,  (4.5) 

where K ,  Lj, Mij and Nij do not depend upon w’. Substituting (4.5) into (4.4) 
and equating terms of the corresponding order with respect to wi and wi in the 
left-hand and the right-hand sides of the equation obtained, we get the following 
relationships : 

1 1 DOln8& a(wj) 
arj M.. j3 = - 2Aij (-- 2 Dt + 

Making use of the first condition in (3.14), we obtain after simple ca,.xlation 
the expression for the quantity K in (4.5): 

(4.7) 

The derivatives of In f3& involved in the above formulae can be expressed in the 
obvious form 

where the representations of the convective derivatives of ( p )  and (u) follow 
from (3.8). Note that the quantites e,O, are known functions depending only upon 
two dynamic variables, ( p )  and (u), as can be readily shown from the analysis 
of equilibrium pseudo-turbulence in I. One can check also that the second require- 
ment of (3.14) is satisfied identically. 

23 FLM 52 



354 Yu. A .  Buyevich 

The components of the tensor W1) are expressed in the form 

Equation (4.9) together with (3.5) and (3.6) defines completely the conserva- 
tion equations for the mean flow in the Navier-Stokes approximation, which 
results from (3.15) at m = 1. New terms occur in these equations in addition to 
those in the Eulerian equations. These terms are proportional to the derivatives 
of the dynamic variables. First of all, the components of q which are perpendicu- 
lar to the vector (u) arise. Also, the normal stresses in both phases undergo some 
change and (which is especially important) additional tangential pseudo-turbu- 
lent stresses appear in the equations discussed. Their origin is similar to that of the 
viscous stresses in a gas or of the Reynolds stresses in a turbulent flow. Finally, 
the forces (H) and h involved in these equations are also changed; new terms 
proportional to derivatives of the dynamic variables appear in the expressions 
for them. 

Representations of the tangential stresses differ essentially from those postu- 
lated by the various phenomenological models of disperse systems. In  particular, 
in the general case it is not an easy task to single out the tensors of effective 
viscosity, and the mean rates of deformation from the tensors of tangential 
stress. As can be readily seen, it is possible only for the simplest flows of a dis- 
perse system (e.g. for one-dimensional flow). The effective pseudo-turbulent vis- 
cosities of both phases depend substantially upon orientation and the general 
type of a flow, so that it is no use to consider them as the permanent physical 
properties of the given disperse system.? 

Equations (3.5) for m = 0 or m = 1 are far more complex than the common 
Eulerian or Navier-Stokes equations for one-phase medium. In the first place, 
this is due to the fact that these equations contain not only the usual nonlinear 
inertial terms, but also other strong nonlinearities resulting from intricate 
dependence of pseudo-turbulent stresses and other pseudo-turbulent quantities 
involved in them upon the dynamic variables. Obviously, these nonlinearities are 
especially significant when the pseudo-turbulent motion is developed sufficiently. 
Simple estimations show that this is the case even for the disperse systems whose 
concentration exceeds 04-0 -05 ,  except for suspensions of very small particles 
in a highly viscous fluid and for the suspensions characterized by nearly equal 
densities of the particles and the fluid. However, even then the allowance for 
pseudo-turbulence is important from the main point of view because in the oppo- 
site case one should have to postulate in some cases an additional ‘ constitutive ’ 
equation or an assumption for determination of the concentration. We can refer, 
for example, to a steady one-dimensional flow in a vertical tube. If pseudo-turbu- 

t It should be noted that this remark is true only for the viscosities resulting from the 
pseudo-turbulent motion. There also exists the other viscosity associated with a regular 
fluid flow through a lattice of unmovable particles without pulsation (e.g. the Einstein 
viscosity), which ought not, of course, to depend upon the properties of a flow. 
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lence is not taken into account, then there are only two equations for (v) and (w) 
which are not satisfied identically, so that the distribution of (p )  over the tube 
cross-section is unspecified and the solution exists for any function (p). On the 
other hand equations (3.15) without pseudo-turbulent terms have no solution 
for a continuous distribution of (p), if such a flow occurs in an oblique tube. It 
can be shown that these difficulties are eliminated if one takes account of the 
pseudo-turbulent motion of the particles and the fluid. 

It would be appropriate to discuss in more detail the equations obtained and the 
formulation of boundary conditions for them in close connexion with the solu- 
tion of various concrete problems of two-phase flow, etc. Therefore we do not 
consider these questions here. 

The treatment of this paper makes the theory proposed in I more complete and 
contributes some new matter to it. Up t o  this point, we have considered no par- 
ticular problems or numerical examples which could illustrate applications of the 
theory. Therefore, one can consider this theory at  present being rather formal. 
However, from now on we have a sufficient information to proceed to concrete 
problems immediately. For present examples, we hope to investigate in the next 
part of the paper the diffusivities and the viscosities of both phases as well as 
other pseudo-turbulent characteristics and rheological properties of suspensions 
at  small Reynolds number. 
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